

INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES (Int. J. of Pharm. Life Sci.)

Computational analysis of COX-1 & COX-2 and finding out

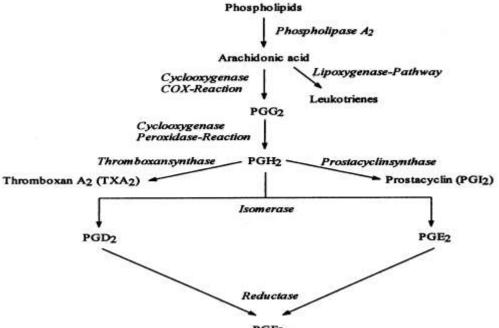
their potent inhibitors

Ankit Singh^{*}, Shilipi Singh, Renukesh Verma and Mayank Agarwal Department of Biotechnology, MITS, Gwalior, (MP) - India

Abstract

The various NSAID's known to the scientists till date, reduces fever and inflammation when the body gets overzealous in its defenses against infection and damage but it may slows blood flow and blood clotting, reducing the chance of stroke and heart attack in susceptible individuals. Three-dimensional structures of pharmacologically important macromolecules offer a route to the discovery of new drugs. Understanding the macromolecule-ligand interactions and validation of method used for docking and virtual screening of chemical databases is crucial step in structure-based design. We therefore carried out molecular docking for structurally diverse COX-1/COX-2 inhibitors including traditional NSAIDs and Autodock 4.1.2. The complete computational analysis has revealed the best possible ligands combinations for the selective inhibition of COX-2 and COX-1. 3-D Structure of COX-2 has been predicted using the homology modeling tools. Results of docking of structurally diverse selective COX-1 hibitors has been successfully carried out.

Key-Words: Cyclooxygenase (COX-1, COX-2), Classic NSAIDs, Selective COX-2 Inhibitors, Inflammation, Docking, Ligplot, Inhibition


Introduction

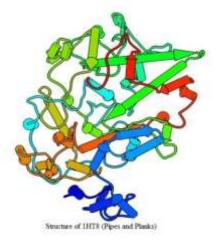
Non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most widely used therapeutics, primarily for the curing of pain and inflammation, especially arthritis. From a historical point of view, the first NSAID with therapeutic reimbursement was aspirin, which has now been applied for more than 100 years as an NSAID. The generally worldwide production of about 50 000 tons a year reflects the importance of this substance even today [1]. In the 1970s, a scientific breakthrough occurred with the elucidation of the molecular mechanism of aspirin and other NSAIDs. Vane, Samuelson and Bergstrom succeeded in illustrate that these anti-inflammatory matter block the biosynthesis of prostaglandins (PGs) which contribute to a range of physiological and pathophysiological functions. Figure 1 recapitulates the biosynthesis of PGs: the preliminary step in the biosynthesis of prostanoids is the emancipation of arachidonic acid (AA) from the phospholipids of the cell film catalyzed by phospholipase A2.

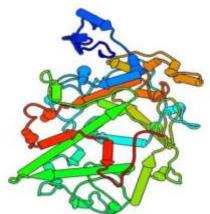
* Corresponding Author E-mail: ankitrules.singh@gmail.com The following important step is the biotransformation of AA by cyclooxygenase. In a bifunctional action, this first produces the unsteady PGG2, the cyclooxygenase response itself, which is then instantly converted into PGH2 by the same enzyme in a peroxidase reaction. As shown in figure 1, the ending products of the AA metabolism are PGs, thromboxanes and prostacyclin [2-5]. PGs are generated by most cells and are also current in tissues, which clarify their lane spectrum of biological responses. PGs reconcile a number of characteristic features of the body's reaction to tissue injury or inflammation. The outstanding effects of the PGs include their cytoprotective properties in the gastrointestinal (GI) tract and arrange of renal tasks in the kidney. PGE2 is the most main PG which mediates the characteristic symptoms of inflammation: rubor, calor, tumor, and dolor. Dilatation of small blood vessels initiates the progress of redness and heat; the increase in vascular permeability causes the characteristic inflammation of tissues. Moreover, PGs sensitize peripheral nerve finish and nociceptors to spread pain signals to the brain and the spinal cord. In adding to the well-accepted proinflammatory role of PGs, there are also details of anti-inflammatory action in certain COX-2-derived PGs in vivo, an experiment lately reported by Gilroy et al. [6]. Like aspirin, all other NSAIDs such as ibuprofen, ketoprofen and naproxen extend their mode of action by blocking

cyclooxygenase. Therefore, group of NSAIDs, for example to luxury inflammatory diseases such as osteoarthritis or rheumatoid arthritis, unavoidably leads to a lack of the prostaglandins requisite for the physiological functions revealed above. Therapeutic effects and side-effects of this class of antiinflammatory drugs are narrowly related to their biochemical mechanism of action.

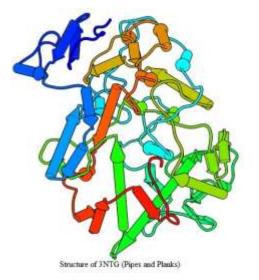
As a outcome, long-term NSAID users endure from a high incidence of GI irritation or, in the worst case, from the progress of life threatening GI ulcers and bleeding. These lesions can lead to improved morbidity in patients [7-9]. Administration of NSAIDs may also lead to renal confusions and have hypertensive effects. Due to a compressed production of PGs, such as PGI2, PGE2 and PDG2, in the ruling of renal blood circulation, the rate of glomeruleric filtration is condensed. Especially in patients with decreased renal function, this leads to maintenance of water, hypertension and, in some cases, to renal failure [10-12]. The reticence of cyclooxygenase in thrombocytes results in decreased production of thromboxane A2. This phenomenon extends bleeding time and leads to inhibition of platelet aggregation. A severe side-effect of NSAIDs is bronchoconstriction with resulting The condensed asthmatic events. amount of bronchodilatating PGE2 on the one hand and a alter in the metabolic lane from the cyclooxygenase pathway to the 5-lipoxygenase pathway on the other hand, seems to be dependable for the bronchoconstriction cause of NSAIDs [13]. The latter pathway metabolizes 'overflow' AA, which cannot be changed by the blocked cyclooxygenase pathway. The resultant leukotrienes act as bronchoconstrictors [14].Because of these problems, a main target of drug research is the

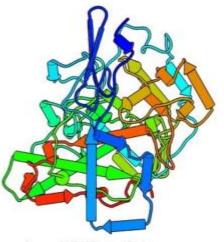
PGF_{2a}


progress of NSAIDs with anti-inflammatory and analgesic action but with no side effects.


Material and Methods

Steps involved in carrying out this study are as follows:

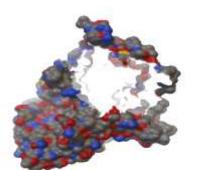

- 1. Sequence retrieval of COX-1 and COX-2 from GenBank. Protein sequences of COX-1 and COX-2 were retrieved from Genbank that were converted into FASTA format.
- 2. The sequences were then subjected to BLASTp for identification of local regions and a sequence with maximum similarity. On the basis of the template sequence Homology modeling between the retrieved sequences and the highly similar sequence was done which provides a structure of query sequence (COX-2).
- 3. After Homology modeling structure refinement was done which is based on energy criteria and other useful parameters for further structure refinement and optimization.
- 4. The structure are been downloaded from protein data bank (rcsb.org) *i.e.* 1HT8, 3MQE, 3NTG, 1PGF are given below.



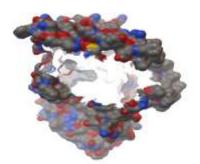
Structure of 3MQE (Pipes and Planks)

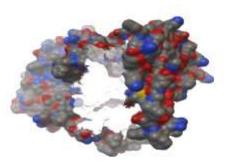

Structure Of 1PGF(Pipes and Planks)

- 5. Protein cleaning is done with the help of UCSF Chemra (www.cgl.ucsf.edu.chimera/) and PNV.
- 6. Energy is minimized by SPDBV (www.spdbv.vital-it.ch/).
- 7. For docking, ligands were retrieved from drug bank and their physicochemical properties were studied. On the basis of these properties targeted ligand molecules were used for docking. Table No. 1
- 8. A priority among the ligands was generated.
- 9. Energy parameters, binding affinity, simulations and Autodock 4.2.1, provide the best possible combinations of COX-2, COX-1 and ligand molecules. Showing in table no. 2,3,4,5 respectively.


Binding site Prediction

Binding sites were characterized by CASTp [15]Q-Site finder and compared by extensive literature search. By comparing prediction of CASTp algorithm and Q-Site Finder, best active sites were selected. CASTp method was used to identify and measure the binding sites, active sites, surface structural pockets (accessible), interior cavities (inaccessible), shape (alpha complex and triangulation), area and volume (solvent and molecular accessible surface) of each pockets and cavities of proteins. CASTp could be used to measure the number, area, circumference of mouth openings of each pocket in solvent and molecular accessible surface [15].




Active site of 1HT8

Active Site of 1PGF

Active Site of 3MQE

Active Site of Valdecoxib

[Singh *et al.*, 5(8): Aug., 2014:3753-3764] ISSN: 0976-7126

Analyzing the Docking Results

The search for the best ways is to fit ligand molecules into structure, using Autodock 4.2.1 resulted in docking files that contained detailed records of docking. The obtained log files were read in ADT (Auto Dock Tool) to analyze the results of docking. The similarity of docked structures was measured by computing the root mean square deviation (RMSD) between the coordinates of the atoms and creating clustering of the conformations based on the RMSD values. The lowest binding energy conformation in all cluster were considered as the most favourable docking pose. Binding energies that are reported represent the sum of the total intermolecular energy, total internal energy and torsional free energy minus the energy of the unbound system. The top ligands were selected among the 17 based on the energy score after virtual screening Table, 2,3,4,5 of result section.

Table 1: List of the Ligands Retrieved from the Drug bank

Diug ballk							
Ligand	Chemical	Molecular					
	formula	wgt.(avg)					
Naproxen.	$C_{14}H_{14}O_3$	230.2592					
Etoricoxib.	$C_{18}H_{15}CIN_2O_2S$	258.842					
Flurbiprofen.	$C_{15}H_{13}FO_2$	244.2609					
Ibuprofen	$C_{13}H_{18}O_2$	206.2808					
Indomethacin.	C ₁₉ H ₁₆ CINO ₄	357.788					
Ketoprofen.	$C_{16}H_{14}O_3$	254.806					
Piroxicam.	$C_{15}H1_{13}N_3O_4S$	331.346					
Diclofinac.	$C_{12}H_{11}CL_2NO_2$	296.149					
Ketorolac.	$C_{15}H_{13}NO_3$	255.2686					
Tolmetin	$C_{15}H_{15}NO_3$	257.2845					
Tenoxicam.	$C_{13}H_{11}N_3O_4S_2$	337.374					
Valdecoxib.	$C_{16}H_{14}N_2O_3S$	314.359					
Meloxicam.	$C_{14}H_{13}N_3O_4S_2$	351.401					
Phenylbutazone.	$C_{19}H_{20}N_2O_2$	308.3743					
Rofecoxib.	$C_{17}H_{14}O_4S$	314.356					
Sulindac	$C_{20}H_{17}FO_3S$	356.411					
Celecoxib.	$C_{17}H_{14}F_3O_2S$	381.3752					

Results and Discussion

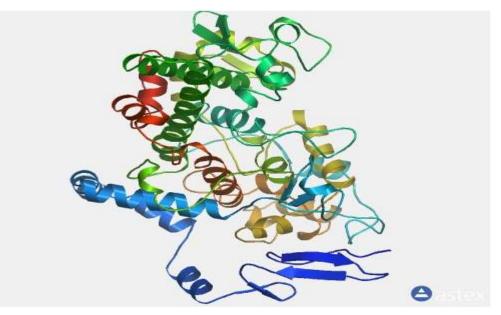
We have successfully carried out docking for 17 structurally diverse COX-2 inhibitors. The obtained ADME score was correlated with the biological activities. Some false positives and false negatives were observed but considering the limitations of the available docking program, the results are encouraging. The detailed analysis of the resulted COX-1&COX-2 - ligand complexes may improve our knowledge in understanding the binding interactions in detail. Thus this study will be useful for the design of novel COX-2 inhibitors based on docking and the resulted bioactive conformations of ligands and the results obtained from

[Singh *et al.*, 5(8): Aug., 2014:3753-3764] ISSN: 0976-7126

the Autodock of molecular docking and on the basis of binding energy scores we can suggest that tenoxicam and valdecoxib are the best fit ligand combinations which binds selectively with COX-2. This study will provide a platform for the further research and developments of drugs which can selectively suppress COX-2 and would not have any further side effects which were caused earlier due to the inhibition of COX-1 .These drugs will surely help a lot in ailing diseases and genetical disorders like colon cancer and various kinds of arthritis. Agents that inhibit COX-2 while spearing COX-1 represent a new attractive therapeutic development and could represent a major advance in the treatment of arthritis and various diseases. The docking model for the substituted tenoxicam and valdecoxib derivatives with the COX-2 receptor has been developed in this project. To the best of literature survey, this is the first report of the Descriptions

molecular modeling studies of these molecules with the COX-2 receptor. The docking simulation suggested that the modifications in the series that results in better binding potential. The Vander-walls, hydrophobic and charge interactions are responsible for forming the stable compound of the ligands with ligands with receptor. From the Table.2,3,4,5 (Results) ligands tenoxicam and valdecoxib do possess minimum dock score i.e. minimum binding energy in kilo joules per mole i.e. these molecule have more affinity for active site of COX-2 enzymes. Clearly, molecules with ester of bulky acids having less affinity for the receptor. Whereas molecules which possesses alcoholic with less bulky function 38-44 are said to have more affinity for COX-2 and can be used as analgesic and antiinflammatory agents after synthesis.

Sequence	s producing s	gnificant alignments:							
and in case of the	None Select	the second se							
ji Aàgama	anta 🛱 Oowni	ned - Greenics							
				Description			Van Total Qu core score co	10.00	Ident Accessi
	SIPDBDICHAI	ISEQUENCE					787 787 96	56 0.0	65% 6059
Download	* Graphics						Owcar		Descriptions
MOE BIP	DBIDICHAIN	SEQUENCE							
	100 C C C C C C C C C C C C C C C C C C	thi 687 Number of Mat	ches: T				1	27	
ange 1: 1 to 535 Grighting		Related Information							
kure 87 bits(2)	Expect 033) 0.0	Nethod Compositional matrix	Identities adjust. 358/555(65)	Pesitives %) 449/555(80	Gaps 9%) 1/555(0%)				
aery # hjon 1 aery 69 njon 61 aery 128	HPCC PC ANPCISHPC LTHERNENCH LTHERNENCH LTHERNENCH	HQGICVFFGLREQCDCT ++G C+ G D+F+CDCTF HRGECHEIGFGGPCDCTF VERD-FIROTINGCVLVF VE FEE +N+ VLT B VERDFERSLINGCVLISF DEDINGCOCLFCAFFLSH	IS+ 0 NCT FE I ++ INFYGENCITFEFLIRIN SKLIPSFFTYNIAMDYIN S 11 SPFTYN+ + Y SN SYLIDSFFTYNWYNYNYN	L+P+P+ +H++ ALMPT PHTYNTI ELTINVSYTTRI E+FSH+SYTTR EAFSHLSYTTRA	60				
ijet 121	LF V DEFERS NE KALFO++ + LIRH-FILDAGINHAFAGNETNGETN 121 LEFFACOEFENGANGINELEDIBHEVILEN/LINEFILDAGINHAFAGNETNGFNENGTNETN		180						
ijat 181	1 8 00071 TIMERGPORT	96797THALGHIVULGHIYIGHLEROYOLALMOGKLAYOMLHORVYFSYELAFY 2 OBUT - LOBOYOL HIYIS LAQualalmogklayon Severyfayaa GGGGTHELGHIVULHIYISTLDRORKALFKOGKLAYOVISEVYFYYKIIO		EVIETVKEIQV EVIETVKEIQV	247 240				
sery 248 rjan 241	(j) 248 DHFFREIPEDBOHMUNGEVPELIPELHVILTELEENHVEDLIKKEHFTWIDELIPET N TE 15 0 NUSEVPELIPELHVILTELEENHVEDLIK HET WITKELIPET 1 241 BETTERHFEHLQEAVGEVPELIPELHVILTELEENHVEDLIGHFERNEGELIPET 300								
901 301 301	+9LILI08T1	NIVIEEYVOOLSGYFLGLA MIVIE+TVO 1907 +19 MIVIEOTVOMLSGYMFMLA	TDFELLF OFOI+URIA	EFIF LYHNHPL+	347 340				
wry 361 gat 361	PD45 + 04	YSYEGELEWISHLVOVSVE YS++QEl+N_S+L+++G+ YSFWQELYHRSILLEBGI	V++F+RQ 3432+ 9380	1+ + VA	427 420				
ery 429 get 421	INESWIAL I +SB ++ (IDQSREMIN)	PPSEYARRFOMKFYTSPQE SECKROF +KFYTSPQE SLIFYARFPLKPYTSPE	LYGENEMAAFLEFLYGDI LYGENEMAAFL+ 17 DI LYGENEMAAFLKALYSDI	DALEFYPOLILER D +E VF LL+ER MMRLYPALLVER	487 460				
	DeelFOE(NIENGRPFILWGLLGHFIC N=E=ORJFSIJVOL=ONFIC NVELGRPFILWGLHGNFIC	SD+YWK SIFQGEVOF +	H DeL weeks i					
ery 548	R CB+ 32-								


Results of BLASTp of COX-1(1HT8) AND COX-2(3MQE)

Operations

elect All Dame Selected 0	a discount	
a page the second second second second		Max Total Guery E
	Descriptor	score score cover value literet Acces
SHOLD BE AND A CHARLEN AND A C		781 781 95% 0.0 65% 40695
INTO BIPDBIDICHWINSEQUENCE		
Semannia 30: 10540599 Longity 552 Burning of 0	Reference T	Barbara di Barbarana Dan
Hange 1: 1 to 271 Reading	Hefated Information	
Score Expect Nethod 781 bits(2017) 0.0 Compositional matri	Iduatities Teathers Cape # adjust: 356/551(65%) 446/551(80%) 1/551(0%)	
Query + Videourrecompetermentergeoc	TRIDINGERSTIREFETALATILARSPORTERE AN TRIDI 0 RET DE T ++ 5+0+0+ +0++	
Septer 1 APPECTUATIONS CONTRACTOR	ALANYARICITALIJALALIAPTREVEVI AL	
	REALINGEFTERIADIINGEFENENTER LIT REALINGETER: + Y DRE-TER-SYTE	
Skjan 45 LIEFWOVWOVWOUPFLASLINGVLT	REVIIDARTYNWESTROWEAFELEYYTRA 110	
QANTY 128 LERVEROCETINGTHINGCLEDARTIN	HITLIARNTISSPORTHONTATTAONTINGTYN LAT + LLER-TIDSSOC-H-NYAFYAONTHOFYN	
Seget 111 LPPVALDCPT2067VERNELPD50T7U	UNILABERTPOPOSIBBERAPYAORTROPTE 110	
Query 180 Indeeportubles//illustvoints	CHQYQLALFADDAALAYQMLACEVYYYYYYHEXXYY 347 493+4181.FKCSHLAYQ++ GEVYYYY+Y++ V	
sores iti İtelesekikelekevileliyletle		
Query 318 LinkyrBalloggQuarogryFallpals	HLVATTMLRENNEVCTLINGERFINGTROLFOLFOT BIT N-TATIMLRENNEVCT-IN ERF WODEGLEGT	
≫2cs 341 มีปาร์สมโดยปฏิสมังผู้สิ่งที่มีเพื่อไป	erritminginanoittingenammingingt seo	
Query 308 ARLINSTINUERFULGINGTIG	PETERLENAGEGUNARIAARENGLISHEEN, 347	
ALILIONTISIVIE-YVG LEGY + Sejen 101 MELLIANTISIVIED/VGELEGYNYN	CALORETTANO AND	
Query has sourcespectromegraphics. When	WILVERFEEDBOOLOGEWIDHFILEVEVEV • YesFeEDBOOK GIRD+ • VA	
Seget 361 STREEDERSPORTENSTILLAGE	014 ERRAVAGUATIVITATION CATALOUTER	
Query 420 INCOVERNMENTS	NETTHENGAALEET.VHDICALEFVEGLIED 447 KLTHERGAAL+ LY EIS *8 YF LL*ER	
soyes an ingenergenergenergenergener	ELIGENDGAELKALVEEIDVMELVEALVER 480	
Query and CHENTIFORDISCHERMANTICLERY	ICHENNERTINGEVORSINTATIONIVIA RAT ICHENRE RIFUGEVOR ++ TAF++ G+C H	
Soin 401 HERALDSEDMELARPSLESSED		
Query \$48 THICKIVITHY \$58		

Results of BLASTp of COX-1(1HT8)AND COX-2(3NTG)

Structure of COX-2 from Swiss model server

Worku	nit: P000002			
Title:co	ox			
1				69

model pic.

9.6	Target:	
33 S	modelled residue caoge:	18 to 568
The second	based on template	3nt1B (1.73 A)
	Sequence Identity [%]:	88.203
235	Exalue:	0

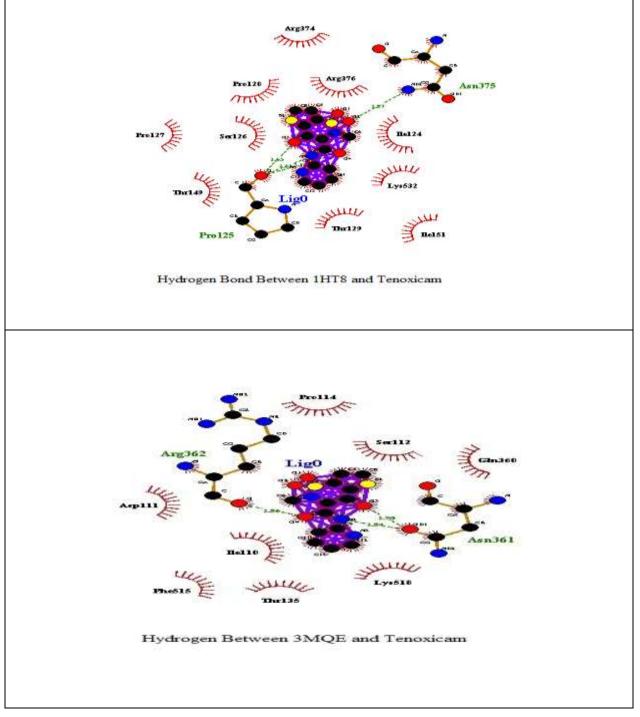
Alignment

TARGET 3nt1B	18 33	ANPCCSHP	1000	2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RTGFYGENCS	TPEFLTRIKL tpefltrikl
SHUID	33	anpccanp	canraecus	t afdaykadat	rtafygenct	Julianananan
TARGET		bh	33333	33333	333	aashbhhhhh
3nt1B		hb	32323	23332	232	sashhhhhhh
TARGET	66	FLKPTPNTVH	YILTHFKGF	NVVNNIPFLR	NAIMSYVLTS	RSHLIDSPPT
3nt1B	81	likptpatyh	vilthfkgv	a nivnnipflr	alimkyvlta	rsylidsppt
TARGET		hh aaaaa a	uha dahab	the shah	bhbhbhbbb	bhh
3nt1B		hh statt t	idh bhhh	ata hbhh	hbhhhhhhh	hbh.
TARGET	116	YNADYGYKSW	EAFSNLSYY	I RALPPVPDDC	PTPLGVKGKK	QLPDSNEIVG
3nt1B	130	<u>ynyhygykaw</u>	eafanlayy	t ralppyaddo	ptpmgwkgnk	elpdakevle
TARGET		8	1111 3.5.5			hhhhhh
3nt1B		à	555 555			hbbbbb
TARGET	166	KLLLRRKFIP	DPQGSNMMF	A FFAQHFTHQF	FKTDHKRGPA	FINGLGHGVD
3nt1B	180	kullrrefip	dpaganmf	a ffaghfthgf	fktdhkrapg	ftralahavd
TARGET		a 55	s sasaddd	ahahahah	333 3	333
3nt1B		h ss	s saaaddd	adadadd	338. J	333

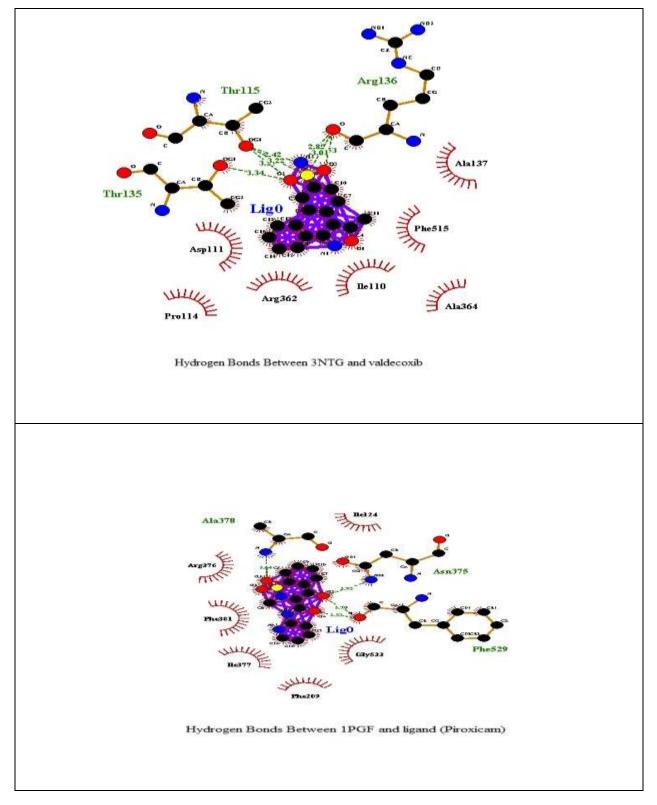
TARG <mark>ET</mark>	216		RQRKLRLFKD	GKAKYQIIDG	EMYPPTVKDT	QAEMIYPPQV
3nt1B	230		rghklrlfkd	aklkyaviga	evypptvkdt	quemiypphi
TARGET 3nt1B		adad da dada da	ababa ababa	383 583	ass asshbb ass asshbb	
TARGEI	266	PEHLRFAVGQ	EVFGLVPGLM	MYATIWLREH	NRVCDVLKQE	HPEWGDEQLF
3nt1B	280	nenlqfavqq	exfglvpglm	Myatiwlreh	nrvcdilkge	hpewadealf
TAR <mark>GE</mark> T 3nt1B		355 333	2000	and the second second second	daddad daddad	bhbhb bbbbh
TARGET	316	QTSRLILIGE	TIKIVIEDYV	QHLSGYHFKL	KFDPELLFNK	QFQYQNRIAA
3nt1B	330	gtarlilige	tikiviedyv	gblagyhfkl	kfdpellfng	qfqyqnrias
TARGET 3nt1B			ubbbbbbbb bb ubbbbbbbbb bb		abh Abh	a h
TARGET	366	EFNTLYHWHP	LLPDTFQIHD	QKYNYQQFIY	NNSILLEHGI	TQFVESFTRQ
3nt1B	380	efntlyhwhp	llpdtfnied	geyafkafly	nnsillehgl	tqfveaftrq
TARGET		abbbb	383	asa bbbb	hahah	bhbhbhbhbs
3nt1B		bbbbb	388	asa bbbb	habab	hbbhbhbhbb
TARGET 3nt1B	416 430		VPPAVQKVSQ VDiavqavak	0.526233552933752024	YQSFNEYRKR VQalneyrkr	FMLKPYESFE falkpytafe

TARGET		3333		hakah	haddhada	hhhhhhh	hh
3nt1B		3333		hhhhh	hhhhhhhhh	hhhhhhh	hh
					1		
TARGET	466	ELTG	ekemsa	ELEALYGDID	AVELYPALLV	EKPRPDAIFG	ETMVEVGAPF
3nt1B	480	elto	ekemaa	elkalyadid	welvpally	ekprpdaifg	etmyelgapf
TARGET		hhh	bhbh	hhhhhh	hhbhhhh		hhhhhhhh
3nt1B		php	hbhh	hhhhhh	hhhhhhh		hbhhhbhhh
	25222	01/201		W.005.002.003555			
TARGET	516	SLKG.	LMGNVI	CSPAYWKPST	FGGEVGFQII	NTASIQSLIC	NNVKGCPFTS
3nt1B	530	alkg	lmanni	capquikpat	. fagevafkii	ntasigslic	navkgopfts
TARGET		hhhh	hh		bhabbha h	hhhhhh	
3nt1B		hbhhi	hh		parath a	hbbhhb	
1024053355555	10000	032731					
TARGET	566	FSV					
3nt1B	580	fura					
TARGET		333					
3nt1B		23,3.					

Docking and ADME


Table 2: Binding energy and other parameters of the ligands with 1HT8							
Ligand	Binding Energy	RMSD	Inhibition Constant	H Bonds			
Celecoxib.	-9.28	0	257.36	4			
Tenoxicam	-12.29	0	988.24	4			
Table 3: Binding energy and other parameters of the ligands with 3MQE							
Ligand	Binding Energy	RMSD	Inhibition Constant	H Bonds			
Tenovicam	-12.37	0	856 71	3			

Tenoxicam	-12.37	0	856.71	3		
Valdecoxib	-12.75	0	452.7	9		
Table 4: Binding energy and other parameters of the ligands with 3NTG						
Ligand	Binding Energy	RMSD	Inhibition Constant	H Bonds		
Ketoprofen	-9.22	0	173.52	3		
Telometin	-9.13	0	204.19	3		
Valdecoxib	-13.4	0	150.74	7		


Table 5: Binding energy and other parameters of the ligands with 1PGF								
Ligand	Binding Energy	RMSD	Inhibition Constant	H Bonds				
Piroxicam	-16.59	0	690.85	4				
Tenoxicam	-13.65	0	98.64	3				
Table 6: Drug Likeliness Perdection(ADME)								
Ligand	Intestinal	Blood brain	Caco-2 permeable	Ames Test				
	absorbtion	barrier						
Tenoxicam	+0.9955	-0.9455	+0.8867	Negative				
Piroxicam	+0.9898	-0.9659	+0.8867	Negative				
Valdecoxib	+1	+0.9386	+0.5	Negative				

Ligplot

© Sakun Publishing House (SPH): IJPLS

References

- 1. Kuhnert N., Pharmazie in unserer Zeit 1 (2000) 32–39.
- J.R. Vane, R.M. Botting, in: Aspirin and Other Salicylates, Chapman & Hall Medical, London, 1992, pp. 3–16.
- 3. Vane J.R., Nature 231 (1971) 232–235.
- 4. Smith W.L., Willis A.L., Nature 231 (1971) 235–239.
- Fro["] lich J.C., Arzneim.-Forsch.: Drug Res. 47 (II) (1997)1289–1296.
- Gilroy D.W., Colville-Nash P.R., Willis D., Chivers J., Paul-Clark M.J., Willoughby D.A., Nature Med. 5 (1999) 698–701.
- Allison M.C., Howatson A.G., Torrance C.J., Lee F.D., Russell R.I.G., N. Engl. J. Med. 327 (1992) 749–754.
- MacDonald T.M., Morant S.V., Robinson G.C., Shield M.J., McGilchrist M.M., Murray F.E., McDevitt D.G., Br. Med. J.315 (1997) 1333–1337.
- Pilotto A., Franceschi M., Leandro G., Dimario F., Valerio G., Eur. J. Gastroenterol. Hepatol. 9 (1997) 951–956.
- Clive D.M., Stoff J.S., N. Engl. J. Med. 310 (1984) 563–572.
- Pirson Y., van Ypersele D.E., Strihou C., Am. J. Kidney Dis.8 (1986) 337–344.
- Venturini C.M., Isakson P., Needleman P., Curr. Opin.Nephrol. Hypertension 7 (1998) 79–82.
- 13. Kuel F.A., Daugherty H.W., Ham E.A., Biochem. Pharmacol.33 (1984) 1–5.

- 14. Ja[°]ger L., Kroegel C., Drug Res. 48 (1998) 205–211.
- Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., and Liang, J., CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34 (2006) 116–118.
- Steiner A.A., HunterJ.C., Phipps S. M., Nucci T. B.,Oliveira D. L.,Roberts J.L., Adrienne C. Scheck,Simmons D. L. and Romanovsky A.A., Cyclooxygenase-1 or -2 which one mediates lipopolysaccharide-induce hypothermia. American Journal of Physiology Regulatory, Integrative and Comparative Physiology. (2011).
- Chakraborti A.K. and Thilagavathi R. Computer-Aided Design of Selective COX-2 Inhibitors: Molecular Docking of Structurly Diverse Cyclooxygenase-2 Inhibitors using FlexX Method." Internet Electronic Journal of Molecular Design. (2003).
- Alasdair T.R. Laurie, Peter R. Oledzki and Richard M. Jackson. "Software tools for docking and structure based drug design." Bioinformatics. (2005), 21, 1908-16.
- 19. Moth C.W., Computational analysis of cyclooxygenase inhibition: energetics and dynamics. Dissertation (2008).
- Gerd Dannhardt, Werner Kiefer. Cyclooxygenase inhibitors – current status and future prospects. European Journal of Medicinal Chemistry, (2001), 36.

How to cite this article

Singh A., Singh S., Verma R. and Agrawal M. (2014). Computational analysis of COX-1 & COX-2 and finding out their potent inhibitors. *Int. J. Pharm. Life Sci.*, 5(8):3753-3764.

Source of Support: Nil; Conflict of Interest: None declared

Received: 28.07.14; Revised: 03.08.14; Accepted: 12.08.14

